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Application of Advanced Statistics in Ophthalmology

Qiao Fan,1 Yik-Ying Teo,1,2 and Seang-Mei Saw1,3

Statistics is an integral part of research in ophthalmology. The
application of appropriate statistical strategies allows clinicians
to realize the full potential in analyzing data from paired ocular
measurements, longitudinal design, and genome-wide associa-
tion study (GWAS). The increasing popularity of longitudinal
follow-up in either clinical or epidemiologic study demands
advanced statistical methodologies. This article describes ro-
bust statistical models that can cope with correlated compo-
nents for both paired-eye data and repeated measurements
over time. Also highlight are the statistical challenges and
corresponding strategies available for testing multiple hypoth-
eses with paired-eye data in GWAS, which has been the subject
of intense interest for the past 5 years within the ophthalmol-
ogy community in investigating the genetic etiology of eye
disorders. (Invest Ophthalmol Vis Sci. 2011;52:6059–6065)
DOI:10.1167/iovs.10-7108

There are several statistical challenges in ophthalmic re-
search. The nature of ocular measurements of paired eyes

poses a long-standing question to ophthalmologists for devel-
oping joint inference on paired-eye data.1,2 The increasing
focus on longitudinal designs in clinical trials and observational
studies has also compounded the need for statistical method-
ologies that handle correlated data from repeated sampling
across time. Furthermore, the advent of large-scale genetic
studies has permitted an unbiased systematic survey of the
entire genomic landscape for variants that contribute to
the etiology of eye disorders. However, this approach faces
the statistical dilemma of testing multiple hypotheses, since
a typical genome-wide study queries up to a million variants
simultaneously. The appropriate application of statistics in
modern ophthalmology research is thus vital in addressing
these challenges. In this article, we review problems common
to longitudinal and genome-wide surveys of eye-related traits
and provide an exposition of proposed solutions.

PAIRED-EYES MEASUREMENTS

Whether data from one eye or both eyes are used depends on
the study hypothesis and clinical relevance. For example, vi-
sual acuity (VA) in the better eye is commonly used to indicate

the degree of visual impairment. Similarly, using the ocular data
of the worse eye is an appropriate definition to characterize
the status of eye disease for patients eligible for clinical trials.
When correlated measurements from both eyes (such as intra-
ocular pressure or refractive error) are available, using the
information from only one eye is a statistically simple ap-
proach, but may not reflect the true extent of the disease.3 The
rationale behind using one eye (right, left, or randomly chosen)
stems from the notion that most ocular measurements are
more similar between the eyes of the same individual than
between different individuals.1 However, even though the
measurements of both eyes correlated highly, it does not nec-
essary mean that the analysis restricted to only right eyes will
yield the same results as those of left eyes. Therefore, cautious
interpretation of any discordant results is required. This paired
eye problem affects the analysis across different study designs
such as case-control, clinical, cross-sectional, and cohort stud-
ies. We examined clinical and epidemiologic articles published
in IOVS and Ophthalmology from January to June 2009 and
documented their analytic approaches. Of the 115 papers that
are covered in our review, clinical studies exhibited a greater
preference to consider all eligible eyes or the affected eye(s)
than epidemiologic studies (Table 1A), whereas paired-eye
designs are more commonly adopted in clinical trials.4

In the paired-eye design, both eyes of the subject are con-
sidered as matched case–control data within every subject.
The pairing nature in such settings leads to the use of the
paired-sample t-test and the McNemar test in ophthalmology to
assess the differences between paired eyes for numerical or
categorical outcomes.4 Under the assumption that both eyes
experience the same exposure within an individual, failure to
account for the intrasample correlation between both eyes can
overestimate the treatment effect, which leads to an increased
likelihood of making a type I error.1,5 Advanced statistical
approaches that are used to perform joint modeling of paired-
eye data have been covered in previous reviews.1,2,6,7 The
generalized estimating equation (GEE) is the extension of lin-
ear regression within a longitudinal framework where repeated
measurements are made within every individual.8–10 Mixed-
effects regression modeling provides a flexible framework for
analyzing clustered data with multilevel structures.9,11,12 Com-
parisons between GEE modeling and mixed-effects regression
on continuous and binary paired-eye data reveal similar perfor-
mance under most conditions,6,7,13 although GEE is recognized
to be computationally more efficient in handling large datasets
with binary or ordinal outcomes.3

LONGITUDINAL FOLLOW-UP

Longitudinal data arising from either clinical trials or cohort
studies allows the progression or natural evolution of a disease
to be studied. This is often not achievable with cross-sectional
study designs. Data in longitudinal follow-up studies are gen-
erally collected in the form of outcomes measured repeatedly
or the time until the onset of the disease.9 The former mainly
focuses on modeling the changes in health outcomes over time
and on identifying the factors that are associated with the
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changes; the latter primarily investigates the factors associated
with the risk of event onset. In ophthalmology, inclusion of
paired-eye data in a longitudinal study for some or all the study
participants complicates the multilevel structure of these data,
and the complexity should be recognized before the initiation
of the study.

Our literature review suggests that most studies adopted the
use of simple analytical methods (see Table 1B), either in a
cross-sectional fashion at discrete time points or to measure the
changes in a numerical outcome over time. Both approaches
transform data from repeated measurements into a single out-
come for each subject, where traditional statistical strategies
(such as paired t-test, �2 test and regression modeling) can be
used in the analysis. The aggregating of the outcome is appro-
priate in a variety of situations in ophthalmology, such as
measuring the average change of intraocular pressure or quan-
tifying the corneal refractive error before and after surgery for
patients with astigmatism. However, it is important to recog-
nize that these strategies do not use all the information that is
available for each subject. To obtain a comprehensive under-
standing of how the outcome changes over time, especially in
the presence of a treatment where the efficacy changes with
time, it becomes necessary to explicitly model the repeated
measurements within each subject. This explicit modeling
becomes even more important when an experiment focuses
on an eye trait that is liable to exhibit large discordances
between the eyes, such as a longitudinal assessment of intra-

ocular pressure progression in individuals with presence of
uveitis in affected eye(s). In such a study, the failure to incor-
porate the correlation between the eyes will bias the statistical
inference to assess the eye-specific risk factor on the longitu-
dinal progression of the outcome.

Appropriate analyses of longitudinal data should consider
the correlation structure between the repeated measurements.
Established methods include repeated measurements analysis
of variance (ANOVA),14–16 GEE,8–10 and mixed-effects regres-
sion model11,17,18 (Table 2). Repeated-measures ANOVA pri-
marily focuses on balanced data where the same number of
repeated observations has been made for every individual.
However, this condition is often not fulfilled in observational
studies. In an unbalanced design where the number of mea-
surements for each individual may differ, mixed-effects models
and GEE are the preferred methods to analyze longitudinal
data. In mixed-effects modeling, the joint consideration of
fixed and random effects estimates both a subject-specific base-
line for the outcome and a subject-specific trend (over time)
for the explanatory variables,11 which allows the extent of
interindividual variations to be measured. Random effects can
be assumed on any covariate or any cluster of subjects to
capture the correlated characteristics in the data; fixed-effects
estimates are interpreted as the conditional effects in the pres-
ence of the covariates with random effects. In GEE, the “sand-
wich covariance” effectively estimates the correlation struc-
ture between all pairs of observations from the same cluster,
yielding robust estimates of the standard errors for the regres-
sion coefficients while allowing the marginal treatment effects
to be calculated.14 In the case of nested multilevel structure,
GEE considers the cluster at the top in assessing the potentially
correlated outcomes.19 Although both mixed-effect and GEE
modeling are commonly used in ophthalmology to handle
numerical and discrete outcomes,11,12 it has been suggested
that mixed-effects regression is more efficient in the presence
of data with a substantial amount of nonrandom missing-
ness.9,17

To illustrate the analytic approaches for fitting longitudinal
data with repeated paired-eye measurements, we consider a
dataset from the Singapore Cohort Study of the Risk Factors for
Myopia (SCORM),20 where a total of 1979 school children
recruited from 1999 to 2001 were followed up longitudinally
for the myopia development. For illustration purposes only,
our primary interest is whether the school that the child comes
from is associated with the students’ refractive error measured
annually for four consecutive years. Sphere equivalent (SE)
measurements (four per eye) are clustered at eye level, and
eyes (two per individual) are clustered at subject level. We
perform four sets of analyses. First, we fit the repeated-mea-
surement SE using data from both eyes of each participant by
mixed-effects model (model 1) and GEE (model 2). For the
mixed-effects model, the subject and eye are modeled as ran-
dom effects in a nested structure, whereas GEE relies on
empiric covariance estimates for the subject clusters.21 Sec-
ond, we model SE longitudinally using measurements from
both eyes by mixed-effects (model 3) and GEE (model 4), but
ignore the intereye correlation for each individual. We con-
sider data from the right eye and those from the left eye as
independent observations. Third, we fit the repeated measure-
ments of SE average from paired eyes using mixed-effects
model (model 5) and GEE (model 6). Fourth, we model SE at
the last visit (year 4) for the data of right eye only from each
individual, where observations from previous visits and from
the left eye are deliberately excluded from this analysis (model
7). Table 3 compares the results of various approaches to
modeling longitudinal SCORM dataset.

The first analytic approach offers distinct advantage over
others at it correctly models repeated measures and intereye

TABLE 1. Categories of Analytic Strategies in Clinical and
Epidemiological Papers*

A. Analyses at Subject Level versus Ocular Level†

Articles
n (%)

No Correction for Correlation
on Paired Eyes‡

Clinical study
Subject level 24 (20.9) —
Ocular level 24 (20.9) 10

Epidemiology study
Subject level 48 (41.8) —
Ocular level 19 (16.4) 4

Total 115 (100)

B. Statistical Approaches for Longitudinal Follow-up Study§

Articles, n (%)

t-test/paired t/�2/McNemar test 18 (26.1)
Wilcoxon rank sum test 11 (15.9)
Logistical/linear regression 10 (14.5)
Repeated ANOVA 6 (8.7)
Mixed model/GEE 11 (15.9)
Survival based analysis 13 (18.9)
Total 69 (100)

* Summarized from 115 clinical and epidemiological articles
published in IOVS and Ophthalmology from January to June 2009,
excluding case reports, noncomparative studies, studies with out-
come unrelated to eye measurements, studies on test-retest reliabil-
ity, and meta-analyses.

† Subject level is the analysis performed with each individual as
the unit, and we cannot distinguish whether paired-eye data are avail-
able or not. Ocular level is the analysis conducted with each eye or
affected eye as the unit.

‡ Studies neither explicitly demonstrate nor mention the correla-
tion adjustment between both eyes in the analysis.

§ Longitudinal studies consist of clinical follow-up and longitudi-
nal observational studies from both prospective and retrospective
cohorts. The statistical approaches are considered as those main sta-
tistical methods in analyzing the primary outcome.
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correlations simultaneously. We observe a significant differ-
ence of refractive error between two schools, where the dif-
ference varies linearly with time. The statistical significances
for the school effect agree between models 1 and 2, whereas
the estimated effect sizes are moderately different as GEE
calculates the population-averaged effect. In the second sce-
nario (models 3 and 4), longitudinal analysis at ocular level
without allowing for intereye correlation results in artificially
narrowed interval estimates of the school effect, even when
the point estimate of the effect remains unbiased. Failure to
account for intereye correlation results in an inflation of the
level of statistical evidence. In the third situation, averaging the
responses from both eyes results in a larger standard error of
the school effect. This is particularly relevant when missing
responses are generated as measurements available for only
one eye or when ocular measurements are weakly correlated
between the two eyes. In this setting, the main effect of school
remains significant but is less significant than that from the first
set of analysis. In the fourth scenario which considers right eye
data only from the last visit, the effect of school is less signif-
icant compared to the reportedly significant results. This sug-
gests that the use of limited or partial data can compromise the
statistical power. It is also important to note that reducing
longitudinal data to cross-sectional fashion in the fourth sce-
nario does not yield any information on the trend or the school
effect varying with time, which is often of interest in longitu-
dinal studies.

For the survival-based analysis used in longitudinal fol-
low-up studies, researchers are most interested in the occur-
rence of the event and time to event onset. Established statis-
tical approaches include the use of the Kaplan-Meier curve, log
rank statistics, and Cox proportional hazard modeling.22–24 If

paired-eye data are of interest in the study, time-to-event is not
independent at the ocular level. To fit correlated survival data,
frailty model, multilevel survival or marginal models are com-
monly adopted in the medical community.25–27 The applica-
tion of such advanced models in ophthalmic research is worth
further exploration, but is beyond the scope of this article.

GENOME-WIDE ASSOCIATION STUDY

Genetic studies are conducted to identify the hereditary nature
of diseases and traits, primarily relying on the comparison of
genetic variation between individuals with differential expres-
sion for the trait of interest. A typical genome-wide association
study (GWAS) surveys between 500,000 and 1,000,000 single-
nucleotide polymorphisms (SNPs) across the entire human
genome simultaneously, and such genome-wide designs have
replaced candidate gene studies as the preferred strategy to
study the genetic etiology of complex human traits,28,29 includ-
ing eye disorders.30–39 Cochran-Armitage trend test, �2 test and
logistic regression model are largely used in the case–control
design to study the overrepresentation of the mutated allele in
cases versus controls.40 In family-based studies, we measure
the excess transmission of any allele from heterozygous par-
ents to affected offsprings under the condition of Mendel’s
law.41 Furthermore, the incorporation of longitudinal informa-
tion such as modeling time to event and repeated measure-
ments will add merit to GWAS.42

Testing multiple hypotheses simultaneously to draw correct
statistical inference is the most challenging aspect in GWAS. It
is now common to assay a million variants in a GWAS, and this
effectively constitutes a million hypothesis tests. A conven-

TABLE 2. Statistical Approaches for Longitudinal Follow-up Study

Approaches Outcome

Adjust for
Correlation

Comments
Paired
Eyes

Repeated
Measures

Charting Event Progression

t-test/ANOVA
�2 Wilcoxon rank tests

Continuous/discrete No No Straightforward; perform analysis at each time point or use changes
as outcome, less powerful due to discarded information; cannot
model the time trend or the predicators associated with outcome

Linear/logistical regression Continuous/binary No No Straightforward; perform analysis at each time point or use changes
as outcome; adjust baseline covariates in the model; less
powerful if discarding information; cannot model the
longitudinal trend

Repeated ANOVA14 Continuous Yes Yes Analytically complex; require balanced data design; less robust to
missing data; cannot model individual trend

Mixed-effects model11,17 Continuous/binary/count Yes Yes Statistically powerful; analytically complex; can model both fixed
and random effects; flexible framework in specifying parameter
distribution; capable of handling unbalanced data

GEE10 Continuous/binary/count Yes Yes Statistically powerful; analytically complex; capable of handling
unbalanced data; model marginal effects; less powerful in
handling missing data

Charting Event Onset Time to Event

Kaplan-Meier Continuous No NA Straightforward; estimate the survival rates
Log rank test Continuous No NA Simple nonparametric approach to compare the rates; unable to

adjust covariates
Proportional Cox model Continuous No NA Quantify effects of covariates on the survival time; compare the

rates by groups
Frailty model26 Continuous Yes NA Analytically complex; capable of modeling correlated time to event

data; flexible framework for random effects
Marginal model27 Continuous Yes NA Analytically complex; capable of modeling correlated time to event

data; robust to time-dependent covariates; estimate marginal
effects

NA, not available.
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tional significance threshold of 5% is thus expected to artifac-
tually identify 5000 markers that are “correlated” to the trait.
To address this problem with multiple testing, geneticists have
adopted a stringent statistical significance level of 5 � 10�8,
commonly defined as genome-wide significance, the bench-
mark for evaluating the fidelity of the association signal at each
marker.40 Replication is considered the gold standard in GWAS
publications.43 The identification of candidate genetic loci for
replication is mainly driven by the level of statistical evidence
from single-marker association tests (either the P value or the
Bayes factor).40,44 More advanced approaches, for example,
pathway-based analyses and epistasis tests, have also been
proposed to prioritize genetic markers for further downstream
functional evaluation. These analytic strategies have been cov-
ered comprehensively in previous reviews.45,46

In gene mapping, phenotypes are usually classified into two
broad types: qualitative (or binary) and quantitative (or contin-
uous) traits. Dichotomous traits have been featured in GWAS
for age-related macular degeneration (AMD),34,35 primary
open-angle glaucoma (POAG),31,39 cataract,37 and high myo-
pia.36,38 The affected individuals are usually classified on the
basis of diagnosis from the worse eye or both eyes, whereas
controls exhibit no sign of syndrome for both eyes. Although
assessing the binary outcome is more directly relevant to clin-
ical application, quantitative traits (endophenotypes or inter-
mediate traits) underlying diseases are also valuable in the
dissection of the genetic architecture, as they take the full-spec-
trum measures into account. For instance, central corneal thick-
ness (CCT) and cup-to-disc ratio (CDR) are presented as quantita-
tive endophenotypes of open-angle glaucoma (PORG).47 Mapping
genes for CCT48–50 and CDR51,52 in GWAS would shed light on
the joint genetic etiology of PORG.

Often, the primary interest in ophthalmic genetic studies
for quantitative trait is to locate shared genetic loci that exert
effects on both eyes,53–55 as the physiological mechanism
underlying intereye difference of phenotypic abnormalities re-
mains elusive and inadequately understood. Therefore, for
quantitative traits collected from both eyes, an immediate
question is whether the analyses should be performed on
data from one eye or both eyes. In seven GWAS papers on
eye-related QTL that have been published to date (http://
www.genome.gov/gwastudies), the analytic strategies var-
ied from the use of the right eye,49,50,52 to a randomly chosen
eye,51 to the averaged measurement from both eyes.32,33,48

Conducting analysis to one eye alone is a simple approach to
avoid statistical model complexity. However, using partial data

of one eye only may be statistical insufficient. Averaging ocular
measurements between both eyes has been suggested to yield
higher heterogeneity estimates than using information from
one eye only and therefore tends to have more power in
genetic studies.56 Using averaged ocular measurements there-
fore has been the convention in linkage study for quantitative
trait in the myopia genetics research community.57–60 In a few
scenarios in which the traits may be moderately or weakly
correlated between the two eyes, however,1 neither the use of
data from one eye nor an average from both is appropriate,
because of the negligence of phenotypic dissimilarity.

A wide array of statistical approaches has emerged recently
for the detection of the pleiotropic genetic factors contributing
to multiple correlated traits, which could also be applied to
paired-eye data (Table 4). Simultaneous consideration of all
correlated phenotypes is shown to be statistically powered to
exploit the pleiotropic genetic effects over the univariate anal-
ysis.61–64 The first approach is to combine dependent test
statistics or estimators from the univariate analyses for a global
assessment on association.61,65–67 In brief, GWAS tests are
conducted for the two eyes separately. The two test statistics
from both eyes (for example, z scores) are combined subse-
quently in a linear form weighted by the covariance matrix
estimates.61,67 Correcting for twice the number of markers is
not relevant here, since only one global test is performed for
each marker, using the combined statistics. This simple ap-
proach does not rely on a complicated model assumption. The
second approach is to transform multiple traits to an optimal
single phenotype with enhanced heritability, and one such
example is principle component analysis.62,68 This dimension-
reduction technique involves intensive computation; thus,
the application in paired-eye data may not be straightfor-
ward. The third one is model-based joint analysis of bivariate
traits, including GEE,63,69 –71 mixed-effects,64,72 and tree-
based regression,73 et cetera. Of these, the GEE model is the
most statistically efficient in performing bivariate association
tests.63,71 To date, few statistical software programs incorpo-
rating model-based joint analyses on bivariate traits are avail-
able74; much more effort should be devoted to this area.

Accumulated evidence suggests that most of the GWASs are
underpowered, especially for the common variants with small-
effect sizes and the associated SNPs generally explain little
genetic variation.75 Meta-analysis provides a robust approach
to enhance statistical power and effective sample size by
pooling evidence from multiple independent association
studies.76,77 Application of meta-analysis in ophthalmology

TABLE 4. Summary of Analytic Approaches for Quantitative Trait of Both-Eyes Data in GWAS

Approaches Comments

Data from One Eye

Either eye or a randomized eye Simple; less powerful if the correlation between the two traits is low

Data from Both Eyes

Transform bivariate traits to a single trait average
measurements

Simple and efficient; statistically less efficient if the correlation between bivariate trait
and missing data present on either eye is low.

Principle components analysis62,68 Statistically powerful; complex; reduce the phenotypes to a single trait;
computational intensive.

Combining univariate test statistics61 Simple and powerful; capable of handling paired-eye traits not highly correlated;
robust for partially missing trait values; non-parametric.

Model-Based Approaches

GEE63,69–71,74 Statistically powerful; robust for various correlation structures; efficient on both
normal and nonnormal traits; complex

Mixed-effect model69,70 Statistically powerful; complex; robust for various correlation structures of multiple
traits; computational intensive

Tree-based regression73 Analytically complex; capable of assessing multiloci association test; computation
extremely intensive
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has become a standard practice to identify genetic polymor-
phisms that are associated with eye disorders.32,33,49 –52 If
the individual GWAS is conducted with different genotyping
platforms, the meta-analysis strategy could use only a small
subset of overlapping markers. One way to address this prob-
lem is imputation-based meta-analysis. It provides a powerful
framework for the assessment of the complete array of genetic
variants (most of which are untyped). Step-by-step guidelines
and techniques for performing imputation-based genome-wide
meta-analysis were reviewed by de Bakker et al.77 In meta-
analysis, using homogeneous populations with the similar ge-
netic background, phenotype definition, and sample ascertain-
ment will increase the likelihood of identifying the genuine
genetic association.78 In the presence of heterogeneity across
different studies, carefully examining the potential factors that
cause heterogeneity is crucial to enhance the credibility of the
combined evidence.

CONCLUSIONS

Adopting appropriate statistical methods will permit us to
explore the full potential in the analysis of the data and make
valid statistical inference. The simple statistical approach com-
monly used in longitudinal studies by using reduced data in
ophthalmology may be useful in some scenarios, but is insuf-
ficient to explicitly model the trend of the treatment effects or
the longitudinal change of the outcome. In addition, if paired-
eye data are involved in longitudinal studies, lack of adjustment
for the correlation between the eyes violates the underlying
assumptions of independent observations. From a methodolog-
ical point of view, both GEE and mixed-effects modeling play
an increasingly important role in analyzing longitudinal re-
peated measurements and paired-eye data simultaneously. In
GWAS, the statistical challenges raised for ocular traits center
on multiple hypothesis testing and analyzing paired-eye data
appropriately. Different approaches have been used for analyz-
ing paired-eye data under various GWAS conditions, and the
best strategy should be considered for all the factors at the
study initiation. Understanding the strengths and weaknesses
of the statistical methods enhances our ability to correctly
interpret the GWAS and differentiate robust findings from
spurious ones; this is especially vital, given the oncoming flood
of GWAS data in the genomic era.
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